Evaluation of the Kirkwood approximation for the diffusivity of channel-confined DNA chains in the de Gennes regime.

نویسندگان

  • Aashish Jain
  • Kevin D Dorfman
چکیده

We use Brownian dynamics with hydrodynamic interactions to calculate both the Kirkwood (short-time) diffusivity and the long-time diffusivity of DNA chains from free solution down to channel confinement in the de Gennes regime. The Kirkwood diffusivity in confinement is always higher than the diffusivity obtained from the mean-squared displacement of the center-of-mass, as is the case in free solution. Moreover, the divergence of the local diffusion tensor, which is non-zero in confinement, makes a negligible contribution to the latter diffusivity in confinement. The maximum error in the Kirkwood approximation in our simulations is about 2% for experimentally relevant simulation times. The error decreases with increasing confinement, consistent with arguments from blob theory and the molecular-weight dependence of the error in free solution. In light of the typical experimental errors in measuring the properties of channel-confined DNA, our results suggest that the Kirkwood approximation is sufficiently accurate to model experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational transition of polyelectrolyte chains extending over the de Gennes regime in slitlike nanochannels

The confinement-induced conformational transitions of the polyelectrolyte chain are characterized with the coarse-grained Brownian dynamics simulations and the blob theory. Submicron-sized biopolymer xanthan is chosen as a model polyelectrolyte taking into account both flexible and semiflexible chains for comparison. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in ...

متن کامل

Conformation and dynamics of DNA confined in slitlike nanofluidic channels.

Using laser fluorescence microscopy, we study the shape and dynamics of individual DNA molecules in slitlike nanochannels confined to a fraction of their bulk radius of gyration. With a confinement size spanning 2 orders of magnitude, we observe a transition from the de Gennes regime to the Odijk regime in the scaling of both the radius of gyration and the relaxation time. The radius of gyratio...

متن کامل

Orientational correlations in confined DNA.

We study how the orientational correlations of DNA confined to nanochannels depend on the channel diameter D by means of Monte Carlo simulations and a mean-field theory. This theory describes DNA conformations in the experimentally relevant regime where the Flory-de Gennes theory does not apply. We show how local correlations determine the dependence of the end-to-end distance of the DNA molecu...

متن کامل

Unsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model

The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2015